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Abstract. The complex motion from a point contact has as consequence the occurrence of a friction torsor 

within both spinning and rolling friction exist. Additionally, recent researches showed that the two friction 

moments, spinning and rolling torques, are not proportional to the normal force. Here, the power law 

dependency is accepted and therefore, besides the coefficients of spinning and rolling friction, the exponents 

from the relations friction torque-normal force should be first determined. The paper proposes as method for 

finding the four parameters the use of the inclined plane principle. The acceleration of a revolution body in 

descending motion on the inclined plane is found for four different values of the tilting angle and a system of 

four equations is obtained. The detailed procedure of finding the solutions of the system is presented in the 

present paper. 

1 Introduction 

The Hertzian type contacts are frequently met in machine 

building in diverse systems such as: cam mechanisms, 

gear transmissions, elasto-hydrodynamic variators etc. 

These mechanical contacts are characterized by the 

existence between the two bodies of a sliding motion 

described by the sliding velocity alv , contained in the 

common tangent plane )P(  and a rotation motion, the last 

described by the relative angular velocity   with a 

component about the common normal - the spinning 

angular velocity s , and another component contained in 

the tangent plane – the rolling angular velocity r . The 

presence of the relative motion in the nonconforming 

contact generates a friction torsor, composed by: the 

friction force   collinear with the relative velocity alv  

but of opposite sense; the spinning friction torque sM , 

collinear and of opposite sense to the angular spinning 

velocity and the rolling friction torque, rM , [1].  

The precise evaluation of the components of the 

friction torsor is a fundamental task in tribological 

research since the values of these parameters together to 

the relative motions are directly in control of the energy 

losses from a mechanical transmission, losses revealed by 

the value of the mechanical efficiency of the transmission, 

[2]. 

Concerning the velocity and the sliding friction T , 

the theory is well established both for lubricated contacts 

by the theory of elasto-hydrodynamic lubrication and for 

dry friction contacts, by the theory based on the Amonton-

Coulomb laws, [3]; as for spinning and rolling friction 

torques, the theory is an open topic and is the subject of 

numerous scientific works and monographs. 

 

 

Fig. 1. The relative motions and the elements of the friction 

torsor in a Hertzian contact 

 

The dynamical treatises accept, in a first 

approximation, analogous to the case of sliding friction, 

that both the spinning and rolling friction torque are 

proportional to the normal force from the contact N , the 

proportionality factors being the coefficient of spinning 

friction ss  and the coefficient of rolling friction rs  

respectively: 

NsM ss   
 

(1) 

NsM rr   

 

(2) 

 

 

 

 

 

 

 

 

 



 

Recent papers based on elements from the theory of 

elasticity conclude that equally the spinning friction 

torque Popov [4] and the rolling friction torque 

Chjerepanov [5] present a dependency on the normal 

force of power law type, specifically:      

sNsM ss


  

 

(3) 

and 

rNsM rr


  

 

(4) 

Under this power-law dependency the tribological and 

energetically study is obviously more complicated given 

that not only the coefficients ss  and rs  must be found, 

but also the exponents s  and r  from the relations  3 

and 4. In a series of recent works, [6-10], there were 

presented several methods and the devices used in the 

estimation of either the coefficient of spinning friction or 

of the coefficient of rolling friction.  

As principle, these techniques employ oscillatory 

motions between the contacting surfaces or continuous 

motions. From the schemes based on monotonous 

velocity motions, one of the most employed is the inclined 

plane method. But one of the major drawbacks of the 

method resides in the extremely small value of the slope 

of the plane. This method gives precise results when the 

ratio r/sr  (where r is the rolling radius) is comparable 

to the inclination angle   of the plane.    

]rad[r/sr   
 

(5) 

When the condition 5 is disobeyed, the results are 

comparable to the measuring errors. Assuming non-linear 

dependence between the friction torques and the normal 

force, the relations 3 and 4, the principle of superposition 

from linear elasticity cannot be applied and therefore, 

there are required experimental techniques which allow 

for simultaneous finding of the characteristic friction 

parameters of spinning and rolling. 

2 The principle of the proposed method 

The need of synchronized estimation of spinning and 

rolling friction torques conducted to the method and 

device [11] consisting in an inclined conduct (groove) 

with respect to horizontal plane. A bearing ball set on the 

top of the V-groove, contacting both walls, is let into to 

free motion and the time necessary for running an 

imposed length along the channel permits finding the 

acceleration and implicitly gives information about the 

spinning friction and rolling friction between the wall and 

the ball.  

Accepting linear dependency between the friction 

torques and the normal force, two experiments carried out 

for two slopes of the groove are required. The method was 

provisionally neglected, due to the impossibility of 

precise controlling of the tilting angle. 

The present paper analyses the possibility of finding 

the characteristic parameters of spinning friction and 

rolling friction under the assumption of nonlinear 

dependency on the normal force.  

The principle of the method is presented in Fig. 2. The 

operating principle of the test rig is relatively simple. A 

bearing ball of R  radius that has a cylindrical ring 

attached to the equatorial zone is set on top of two 

cylindrical parallel rods. The parallelism between the axes 

of the rods is accurately controlled with two prismatic 

parts having each two holes of diameters equal to the ones 

of the rods. The holes from the two parts are machined 

simultaneously in order to have precisely the same 

distance between axes. The horizontality of the plane 

containing the rods can be controlled with accuracy by 

placing a ball in contact with the two rods. When the balls 

are immobile, the plane of their axes can be considered 

horizontal. A cord winded over the ring passes over a 

pulley of negligible mass.  

 

Fig. 2. The principle of the experimental device  

For the dynamical analysis, the scheme from Fig. 3 is 

considered. A body with the mass m  is hanging at the end 

of the cord and has the function of actuating the ball into 

motion. The ball is contacting the rods in two points, 'C  

and "C . Assuming that there is no slip in these points, the 

straight line "C'C  is the instantaneous axis of rotation 

and the angular velocity is parallel to it. 

In each of the two contact points occur: the friction force, 

",' TT  parallel to the Ox  axis; the moment of spinning 

friction ss ",' MM  directed along the normal on the 

contact point and the moment of rolling friction 

rr ",' MM  normal to the ss ",' MM , respectively. 

Applying the hypothesis of dry friction, all the 

components of the friction torsor from the two contact 

points are constant and thus it is expected that the motion 

of the ball is uniformly accelerated.  

The theorem of motion of center of mass and the 

moment of momentum theorem are applied with respect 

to the center of mass in order to find the law of motion of 

the ball.  

The center of mass moves along the horizontal 

direction and the abscissa Gx  describes its position. The 

ball also has a rotation motion characterized by the angle 

 . It is considered that initially:  

 



 

 

 
Fig. 3. The schematics for dynamical analysis 
 

0,0x    
 

(6) 

The pure rolling condition is expressed as: 

rxG   
 

(7) 

where r  is the distance from the center of the ball to the 

line of the contact points "C'C . Thus, one of the 

parameters   or Gx  is sufficient to characterize the 

position of the ball. The equation of motion of the center 

of the ball has the following form:  

FTTNNGrM  "'"'G  
 

(8) 

where F  is the tension from the rope, equal in modulus 

with:  

mgF   
 

(9) 

Due to symmetry, the following equalities are valid: 

"T'T,"N'N   

 
 

(10) 

and are considered in the projections of the equation 8 on 

the axes. It results the following system: 

MgcosN20

T2mgMr
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(11) 

And the following expressions result: 
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Based on Fig. 1, the angle can be expressed as   

)r(R2

d
asin

0
  

(13) 

where 0r  is the radius of the rods. The moment of 

momentum theorem, expressed as: 

rrsst

"C'C

"'"'mgR

)"'()''(J

MMMMk

TNrTNrk


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(14) 

where tR  is the radius of winding of the ring, has 

projection only on Oz  axis. Based on the scheme from 

Fig. 2, the following scalar equation is obtained:      

G

rtt

J

sinM2sinM2cosrT2mgR 



  

 

(15

) 

In the equation 15 there are introduced the proposed 

dependencies 3 and 4 for the two friction torques and the 

relation 12 for the modulus of the friction force; the final 

form of the equation of motion of the ball is obtained: 
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(16) 

The relation 16 can now be regarded as a constraining 

relationship linking the parameters srsr ,,s,s  :  
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3 Discussions concerning the 
possibilities of finding the tribological 
parameters 

As affirmed previously, the experimental tests aim to find 

the parameters ss , 
rs

, s  and r  and these will permit 

establishing the spinning friction torque and rolling 

friction torque, sM  and rM , respectively. It results that 

four tests with different values of the parameters involved 

in equation 17 are necessary. As it can be noticed, the 

constructive parameters of the device that can be varied 

are the angle   and the mass m  of the actuating weight. 

The design of the device allows for accurate adjustment 

by using prismatic parts for supporting the rods with 

different distances between the guide-holes. Four 

equations having the following form are obtained:   
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(18

) 

The system 18 is system of transcendental equations and 

for solving it the use of a numerical method (Newton-

Raphson) is required. The calculus can be simplified if it 

considered the notice that the equations 18 are linear in 

ss  and rs . Therefore, from the last two relations, ss  and 

rs  are expressed as functions of s  and r .  
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Due to lack of space the explicit form of the equation 19 

is not presented. The equations 19 are introduced in the 

first two equations 18 and it results a system of 

transcendental equations in s , r  having the form:    
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The numerical solution of the system 20 written in the 

simplified manner: 
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(21) 

was strongly dependant on the precision of experimental 

finding of the angular acceleration k .  

To illustrate this affirmation, the following example is 

given. For the parameters of the rotor m.R 030 , 

m.Rt 0330 , kg882.0M  and 2
G mkg493.3J  , the 

desired parameters were assumed known 5.1s  , 

3.1r   4
r 102s  4

s 105s   and additionally the 

values of the mass 07.0m1  05.0m2   03.0m3   

05.0m4   (kg) and the angles rad29.01  , 

443.02  , 608.03  , 4 0 796.   (rad) and the 

angular acceleration for descending motion were found.  
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(22) 

Now, the values of the accelerations k  and masses km  

are introduced in the equations 20 with the unknowns s  

and r  and the solution obviously must be:   

5.1s  , 3.1r   
 

(23) 

 
Considering that the angular acceleration 1  was found 

with a %2.0  error, it is obtained (from the Mathcad 

program written for the study) that: 

 
To clarify this behaviour, the variations of the two 

function from system 21 were represented for values of 

s  and r  in the range )2,1( . The two functions are 

represented in Fig. 4 by the level curves.     



 

 

 

Fig. 4. The functions 1 2H ;H  plotted by level curves  

 

As it can be noticed form Fig. 4, the curves 0H1   

and 0H2   are very closed to each other and it is difficult 

to identify the point of intersection.   

The following function is defined: 

2
2

2
1 HHH   

 

(24) 

If the system 21 has a stable solution the plot of the 

function H  should present distinct minimum points.    

 

Fig. 5. Representation of the H function    

As it can be observed from Fig. 5, the region where 

the H  presents values close to zero is very wide on one 

direction and this fact justifies the instability of the 

solution.  

Next, the above methodology applied to a problem 

with a stable solution is presented. More exactly, it is 

considered a problem where the functions 1H  and 2H  

have simple expression, so the solution of the system 21 

can be obtain analytically.  

The problem of finding the intersection between a 

circle and an ellipse is considered. The equation of the 

circle is: 

0ryx)y,x(H 222
1   

 

(25) 

where r  is the radius of the circle. The equation of the 

ellipse is: 
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(26) 

where b,a  are the ellipse semi-axes. The graphical 

solution of the problem is presented in Fig. 6. 

 

Fig. 6. The graphical solution of the problem 

 

Next, in Figs. 7 and 8 the contour plots of the functions 

1H  and 2H  (relations 25 and 26, respectively) are 

traced. 

The contour lines of function H are plotted in Fig. 9. 

Due to the existence of stable solutions of the problem, 

the domains from xy plane where the solutions should be 

looked for are well defined 

 

Fig.7. Contour plot of H1 function 



 

 

Fig.8. Contour plot of H2 function 

 
Fig. 9. The contour plots of H function and the domains of the 

solutions 

4 Conclusions 

The paper shows that when a bearing ball is contacting 

two identical metallic parallel rods, two contact points 

occur and here there are present both spinning and rolling 

friction torques. It is assumed that each of the two 

moments depends on the normal force according to a 

power law relation and four parameters are necessary for 

characterizing the two moments: the coefficients and the 

exponents from the two relations moment-normal force.  

 

 

 

 

 

 

 

 

 

 

 

The method proposed in order to establish these 

parameters is finding the acceleration of the ball for 

downward motion for four different inclination angles of 

the plane of the two rods. Consequently, a system of four 

equations with four unknowns is obtained. The system is 

linear with respect to the coefficients of spinning and 

rolling friction allows for reducing the system to a linear 

one with two unknowns, the two exponents.  

For an actual case, when the characteristics of the 

system and the values of the four unknowns were assumed 

identified, it is proved that the system is extremely 

instable. Practically, an insignificant variation of the 

known parameters produces a substantial variation of the 

solution.  
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